
 Programmer’s Guide to the GQ Facility

A Facility for Generalized Queues

David E. Beecher

Mallinckrodt Institute of Radiology
Electronic Radiology Laboratory

510 South Kingshighway Boulevard
St. Louis, Missouri 63110

314/362-6965 (Voice)
314/362-6971 (FAX)

Version 2.10.0

August 3, 1998

A Guide to using the Multiple Process, Generalized
Queuing Facility.

 Copyright (c) 1995 RSNA, Washington University
/wuerlb/documentation/dicom/facilities/gq.frm

t
NQ
at
time.
 of a
re is
nsure

sible for

es that
ct rou-
 which

e can
Queue

e iden-
es are
e, to
,
er to
to

ent has
o be
iable set
ma-
y and
nt, the

d
ne auto-

em-
e shared
mand.
emory
hore.

manu-
Y

1 Introduction

The GQ (Generalized Queuing) facility allows single or multiple processes to create distinc
queues and use them for interprocess communication. This facility is an extension of the S
(Study Name Queue) facility from the DICOM ‘92 demonstration. The main difference is th
this year the queue elements are completely arbitrary, and are specified at queue creation
The queuing mechanisms have no idea what a queue element looks like, only that they are
particular length (all elements of a particular queue must be the same length), and that the
some maximum number of elements for a particular queue. It is the user’s responsibility to e
that the data being enqueued and dequeued is of the proper size and type, since it is impos
the queuing routines to perform any element type checking.

These queues are implemented using shared memory and semaphores, two UNIX resourc
must be present for the queues to operate properly. Most UNIX systems will supply the exa
tines used or a reasonable facsimile. Access to these queues is through standard routines
are described below.

Queues are created and deleted with GQ_InitQueue and GQ_KillQueue. A particular queu
be attached with GQ_GetQueue. A process can attach multiple queues by calling GQ_Get
multiple times; each time with a different queue identifier. The responsibilty of freeing the
resources allocated to the queues lies with the user. GQ_KillQueue with the specified queu
tifier will deallocate all resources allocated to that queue. Two standard manipulation routin
included, GQ_Enqueue, to place a new element on the tail of the queue, and GQ_Dequeu
remove an element from the head of the queue and return it to the user. One utility routine
GQ_PrintQueue, is used to dump all the elements of a queue with a specific queue identifi
standard output. A print routine must be supplied to GQ_PrintQueue so that it knows how
dump the elements of that particular queue.

Before these routines can be successfully executed, the user must be sure that his environm
the variable QUEUE_DIRECTORY set to some directory which is writable by the process t
executed. All processes wishing to use the shared queues must have this environment var
to the same directory. This directory contains a file which holds the shared-memory and se
phore identifiers. As mentioned above, the GQ facility is implemented using shared memor
semaphore resources that are present on most machines. If these resources are not prese
GQ routines will return the value GQ_UNIMPLEMENTED.

A final note on resource allocation. It is very important to deallocate the shared memory an
semaphore resources used after programs are finished with a particular queue. This is do
matically by calling the routine GQ_KillQueue. If this is not done, semaphore and shared m
ory resources will be quickly exhausted. Each queue created uses one semaphore and on
memory segment. The user can examine how many are currently in use with the ipcs com
These segments can be removed manually with the ipcrm command. ipcrm -m <shared m
id> will remove a shared memory segment. ipcrm -s <semaphore id> will remove a semap
The ids needed are easily extracted from the ipcs command. When removing the queues
ally, it is important to also remove the small communications file in the QUEUE_DIRECTOR
1/11

ould

e

e id.
directory called gq.dat<qid>. For instance, if a queue was created with identifier 0, this file w
be named “gq.dat0”.

2 Include Files

All applications that use the GQ facility should include these files in the following order:

#include “dicom.h”
#include “condition.h”
#include “gq.h”

3 Return Values

The following returns are possible from the GQ facility:

4 GQ Routines

This section provides detailed documentation for each GQ facility routine.

GQ_NORMAL Specified operation was successful

GQ_QUEUEFULL Attempt to enqueue another element to a full queue

GQ_QUEUEEMPTY Attempt to dequeue an element from an empty queu

GQ_SHAREDMEMORYFAIL The shared memory resource failed

GQ_SEMAPHOREFAIL The semaphore resource failed

GQ_FILEACCESSFAIL Could not access the communications file

GQ_NOMEMORY Could not allocate memory

GQ_UNIMPLEMENTED This facility is unimplemented

GQ_BADELEMSIZE Inconsistent element size specification

GQ_MAXQUEUEEXCEEDED Exceeded maximum allowed number of queues

GQ_FILECREATEFAILED Failed creating file “gq.dat<id>” in
QUEUE_DIRECTORY

GQ_MULTCREATEREQUEST Request to create queue with already existing queu

GQ_NOPENQUEUE There is currently no open queue
2/11

er is the
GQ_Enqueue

Name

GQ_Enqueue - place a new element at the tail of the queue with specified queue id

Synopsis

CONDITION GQ_Enqueue(int qid, void *element)

qid unique id of the queue in which element is to be enqueued

element a pointer to the data element to enqueue

Description

The element pointed to by the input parameter, element, is copied to the tail of the selected queue.

Notes

It is the users responsibility to ensure that the size of the element referred to with the pointer paramet
correct size for this particular queue.

Return Values

GQ_NORMAL
GQ_SEMAPHOREFAIL
GQ_QUEUEFULL
GQ_NOPENQUEUE
GQ_UNIMPLEMENTED
3/11

e queue.

ter is
GQ_Dequeue

Name

GQ_Dequeue - remove the next element from the head of the specified queue and return it

Synopsis

CONDITION GQ_Dequeue(int qid, void *element)

qid unique id of the queue from which element is to be dequeued

element element storage for the newly dequeued element

Description

The element pointed to by the input parameter, element, is replaced by the contents of the head of th

Notes

It is the user’s responsibility to ensure that the size of the element referred to with the pointer parame
the correct size for this particular queue.

Return Values

GQ_NORMAL
GQ_SEMAPHOREFAIL
GQ_QUEUEMPTY
GQ_NOPENQUEUE
GQ_UNIMPLEMENTED
4/11

eue for
at goes
ts. The
ations on

ot
GQ_GetQueue

Name

GQ_GetQueue - select a new (already existing) queue to use

Synopsis

CONDITION GQ_GetQueue(int qid, int element_size);

qid The queue identifier.

element_size The size of the elements for this queue

Description

This routine attempts to access the already existing queue identified by qid, and make it the current qu
the calling routine. There can be problems with file access, semaphores, or shared memory. If all th
well, then the size the user passes is checked against the known size of the existing queue’s elemen
system assumes the element size passed by the caller in any subsequent enqueue or dequeue oper
this queue.

Notes

Problems with this routine usually indicate that the QUEUE_DIRECTORY environment variable has n
been set or has been set incorrectly.

Return Values

GQ_NORMAL
GQ_SHAREDMEMORYFAIL
GQ_FILEACCESSFAIL
GQ_BADELEMSIZE
GQ_UNIMPLEMENTED
5/11

eue for
nts cur-

nts from
is rou-
en set
GQ_GetQueueSize

Name

GQ_GetQueueSize - return the number of elements in the specified queue.

Synopsis

CONDITION GQ_GetQueueSize(int qid, int *size);

qid The queue identifier.

size Pointer to a user defined int that will hold the size of the specified queue.

Description

This routine attempts to access the already existing queue identified by qid, and make it the current qu
the calling routine. If all checks are satisfied, it goes thru the queue and counts the number of eleme
rently in the queue..

Notes

This operation is atomic in the sense that no other process will be able to enqueue or dequeue eleme
this queue while this routine counts the number of elements currently in the queue. Problems with th
tine usually indicate that the QUEUE_DIRECTORY environment variable has not been set or has be
incorrectly.

Return Values

GQ_NORMAL
GQ_NOMEMORY
GQ_NOOPENQUEUE
GQ_SHAREDMEMORYFAIL
GQ_FILEACCESSFAIL
GQ_BADELEMSIZE
GQ_UNIMPLEMENTED
6/11

ch of
initialize
ications

ot
GQ_InitQueue

Name

GQ_InitQueue - create a new queue for use by the system

Synopsis

CONDITION GQ_InitQueue(int qid, int num_elements, int element_size)

qid The new queue identifier

num_elements The maximum number of elements this queue can hold

element_size The size of each of the above elements

Description

This routine attempts to create a new queue with the specified queue id (qid), with num_elements ea
size element_size. It needs to allocate a chunk of shared memory the correct size, and allocate and
a semaphore for exclusive access, either of which may fail. If all these succeed, it creates a commun
file and calls GQ_GetQueue before returning success.

Notes

Problems with this routine usually indicate that the QUEUE_DIRECTORY environment variable has n
been set or has been set incorrectly.

Return Values

GQ_NORMAL
GQ_SHAREDMEMORYFAIL
GQ_SEMAPHOREFAIL
GQ_FILEACCESSFAIL
GQ_UNIMPLEMENTED
7/11

y seg-
the small
GQ_KillQueue

Name

GQ_KillQueue - remove an existing queue from the system

Synopsis

CONDITION GQ_KillQueue(int qid)

qid The queue identifier to remove

Description

This routine operates on the queue with queue identifier qid. It attempts to detach the shared memor
ment holding the queue and then frees up the associated semaphore. As a final cleanup it removes
ASCII file used to communicate these identifiers between processes.

Return Values

GQ_NORMAL
GQ_SHAREDMEMORYFAIL
GQ_SEMAPHOREFAIL
GQ_UNIMPLEMENTED
8/11

he user
GQ_ModifyHeadElement

Name

GQ_ModifyHeadElement - Atomically modify element at the head of the queue

Synopsis

CONDITION GQ_ModifyHeadElement(int qid, void *element, void (*func)(void *element))

qid The queue identifier of the queue

element Pointer to the head element that will be passed to the function passed as the
next parameter

func Pointer to function that will be invoked by the routine in order to allow the user to
handle the head element.

Description

The modification operation takes place atomically. NO other enqueues or dequeues can occur until t
supplied function has terminated and the routine returns.

Notes

User should allocate memory for the element.

Return Values

GQ_NORMAL
GQ_NOMEMORY
GQ_SHAREDMEMORYFAIL
GQ_SEMAPHOREFAIL
GQ_UNIMPLEMENTED
9/11

ing it.

 the

peration
GQ_PeekQueue

Name

GQ_PeekQueue - allows the user to peek at the head element of the specified queue without remov

Synopsis

CONDITION GQ_PeekQueue(int qid, void *element)

qid queue identifier of the queue whose head element is to be peeked at.

element Pointer to user allocated element in which the element at the head of the specified
queue will be copied and retruned to user.

Description

This routine allows users to peek at the head element of the specified queue without removing it from
queue.

Notes

This operation is atomic in the sense that no element can be enqueued or dequeued while the peek o
is in progress. The user is required to allocate memory for the element.

Return Values

GQ_NORMAL
GQ_NOMEMORY
GQ_NOPENQUEUE
GQ_SEMAPHOREFAIL
GQ_QUEUEEMPTY
GQ_UNIMPLEMENTED
10/11

s
parame-
GQ_PrintQueue

Name

GQ_PrintQueue - provide a mechanism to dump the contents of the specified queue.

Synopsis

CONDITION GQ_PrintQueue(int qid, void (print_func(void*)))

qid queue identifier whose contents are to be printed

print_func the user supplied function that knows how to print a queue element

Description

This function is a utility principally meant for use by developers. Since the queuing mechanisms know
nothing about an element’s structure (except its size), a printing routine must be passed as an input
ter so that each element can be printed.

Return Values

GQ_NORMAL
GQ_NOPENQUEUE
GQ_SEMAPHOREFAIL
GQ_QUEUEEMPTY
GQ_UNIMPLEMENTED
11/11

	Programmer’s Guide to the GQ Facility
	1 Introduction
	2 Include Files
	3 Return Values
	4 GQ Routines

	GQ_Enqueue
	GQ_Dequeue
	GQ_GetQueue
	GQ_GetQueueSize
	GQ_InitQueue
	GQ_KillQueue
	GQ_ModifyHeadElement
	GQ_PeekQueue
	GQ_PrintQueue

